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Abstract. Stability and geometry of the lyotropic periodic cubic mesophases are considered in the frame-
work of a general symmetry based phenomenological approach. A limited number of cubic structural types
is shown to be formed by amphiphilic molecular aggregates due to the specific nature of self-organizing
units. The related thermodynamic models predict topology of phase diagrams and specific features of
transitions between isotropic, lamellar, cubic bicontinuous and cubic micellar phases.
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1 Introduction

Over the few past decades, considerable efforts have
been expended to clarify the structures of various
translationally-ordered lyotropic cubic liquid-crystalline
phases as well as their location in phase diagrams. Col-
lected data confirm not only the existence of such struc-
tures but allow us to discuss the cubic polymorphism for
different complex fluids [1]. However it is still unclear how
many structures there are and where they are located
in the phase diagrams. The cubic phases exhibit differ-
ent structures and there are two fundamentally different
classes: i) the bicontinuous cubic, consisting of a single,
continuous bilayers of amphiphilic molecules that divide
space into two interwoven, continuous networks of wa-
ter and amphiphile; ii) the micellar structures composed
of discrete aggregates of “oil in water” or “water in oil”
type. The basic structures of bicontinuous cubic phases are
now well established as being of space groups O4

h(Pn3m),
O9
h(Im3m) and O10

h (Ia3d) and corresponding to the Di-
amond (D), Schwarz-P or I-WP, and Schoen Gyroid (G)
minimal surfaces, respectively. In the micellar systems the
cubic structure types A15, A1, C15 and A2 corresponding
to the space groups O3

h(Pm3n), O5
h(Fm3m), O7

h(Fd3m),
and O9

h , respectively, were found (see [2–4] and references
there). Nevertheless, the structure of many possible can-
didates remains unresolved because lyotropic cubic phases
often form relatively large microcrystalline domains which
makes small-angle X-ray (SAXS) studies on these mate-
rials difficult. Samples also posses a finite and unknown
distribution of microcrystalline orientations rather than
a uniform powder. Scattering data from lyotropic cubic
phases generally contain only a small number of reflections
which makes indexing and space group determination very
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difficult. However, one should remember that amphiphilic
molecular aggregates, self-organized in cubic crystalline
structures, possess some properties that are fundamen-
tally different from those formed by molecules in ordinary
crystals. These structures are not solid-like because both
water and surfactant molecules are in the liquid state. Due
to these specific features, molecular aggregates can be spa-
tially arranged only in a limited number of structures and
the principal aim of this paper is, using natural and exper-
imentally confirmed properties of complex fluids, to derive
all possible types of cubic periodic organization for the mi-
cellar and bicontinuous phases which one can use then as
probe structures for X-ray experiments in the search for
new phases.

The paper is organized as follows. After an introduc-
tion, the formation of the periodically ordered lyotropic
mesophases from the isotropic solution is considered in the
framework of a general phenomenological scheme. Ther-
modynamical arguments, as well as specific features of the
aggregated amphiphilic molecules and their interactions,
are then used to select the allowed space groups for the
cubic structures formed by amphiphilic aggregates. The
final discussion compares our theoretical predictions with
known experimental results.

2 Phenomenological consideration

2.1 Stable anisotropic phases

Since this paper does not intend to analyze in detail ther-
modynamical aspects of isotropic to cubic phase trans-
formations only results allowing to restrict a number
of cubic crystal classes under consideration are of in-
terest. The phenomenological approach introduced by
Landau [5] which treats phase transitions on the basis
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of symmetry considerations and needs no structural data
but only information about the symmetry group of the sys-
tem and symmetry of transformation mechanism (i.e. rel-
evant irreducible representation) is well adopted for such
a goal. We will follow this approach in the beginning, and
only in the final stage will the specific properties of the
self-organization of the amphiphilic molecules with cubic
structure be discussed.

Let us start from the full space symmetry of the
phases. The symmetry group of an isotropic state is the
extended Euclidean group Ẽ3 which is a semi-direct prod-
uct of the continuous three-dimensional translation group
R3, and orthogonal group O(3) consisting of all contin-
uous proper and improper rotations in the 3D-space [6].
We are considering the segregation type transformation
which appears as initial density distribution ρ0(r) = const.
to be modulated periodically with undulation function
δρ(r) =ρd(r)−ρ0(r). This periodic deviation of density δρ
can be expanded using Φmkj (r) basis functions of an rele-
vant irreducible representation (IR) of Ẽ3 group:

δρ(r) =
∑
kj ,m

ηmkjΦ
m
kj (r), (1)

where ηmkj are the order parameter (OP) components and
kj are the reciprocal space vectors, m specifies an irre-
ducible representation. The functions Φmkj (r) span infinite-
dimensional irreducible representations (IRs) of Ẽ3 group
which will be denoted hereafter by Dm,kj

± . The lower index
indicates symmetry properties with respect to the inver-
sion center. In order to construct IRs Dm,kj

± the method
of induced representation can be used in which irreducible
representations (small representations) of the invariant
point group Gkj = C∞v of the kj vector that is isomor-
phous to SO(2) group induce IRs for Ẽ3 space group [6].

The “unit cell” of the parent isotropic state is reduced
to a single subunit (molecular or micellar center of mass)
which is invariant under all symmetry operations of Ẽ3.
Since the ordering process can be fully specified by the
scalar parameter which is a probability density variation,
and due to the invariance of the structure just mentioned,
the {ηmkj} necessarily transforms as the IR denoted D0,kj

+ ,
i.e. the IR induced by the identity (totally symmetric)
small irreducible representation of C∞v.

The variational free energy F (T, p, ηmkj ) (Landau po-
tential) is invariant by the symmetry transformations of
the parent structure. Thus it can be expanded in Taylor
series by invariant homogeneous polynomials of OP com-
ponents. The general form of such a polynomial is

In =
∑
s

Csη1 · · · ηns

=
∑
s

Csei(k1+···+kns)r |ηk1 | · · ·
∣∣ηkns

∣∣. (2)

Since the free energy F (T, p, η0
kj

) must be a function
of modulus |kj | but not their orientation, exponential

multipliers in equation (2) have to be equal to unity. The
{kj} vector star consists of an infinite number of arms and
for any ns, the corresponding low symmetry star can be
chosen such that (k1 + · · ·+kns) = 0 and the above condi-
tion is satisfied. This means that, considering segregation
process, the variational free-energy F (T, p, η0

kj
) expansion

contains invariant polynomials of all degrees, excluding
the linear one.

In order to find the stable anisotropic phases one needs
to minimize the variational free energy (Landau potential)
F (T, p, ηmkj) with respect to the OP components:

∂F (T, p, ηmkj)

∂ηmkj
= 0. (3)

Despite the infinite number of equations in (3) the problem
can be solved geometrically in the order-parameter space
ε for which the set of OP components {ηmkj} forms the ba-
sis [7,8]. The δρ variation of probability density associated
with a phase transition can be considered as a vector in
the ε-space, and the components of {ηmkj} vector are the
values of the OP which minimize the thermodynamic po-
tential. Minimization conditions (3) determine in ε-space
{ηeq
kj
} stationary vectors which are invariant with respect

to different subgroups of OP symmetry group, formed by
the matrices of the relevant IR.

Matrices of the relevant D0,kj
+ IR corresponding to the

rotation subgroup of Ẽ3 group are unity ones permuting
the arms of {kj} vector star. Matrices corresponding to
the elements of translation subgroup are diagonal ones, the
elements of these matrices are exponentials exp(ikjai). For
any crystal group, a homomorphous subgroup of the L-
group can be found and the corresponding invariant (sta-
tionary) vector can be determined. One can use for this
end the obvious idea that only for invariant components
of {η0

kj
}, exponential multipliers will be equal to unity

(exp{ikjai} = 1). Space arrangement of equilibrium {k0j}
and {a0i} stars must be consistent also with the point
group of the considered crystal class. In the 3D-periodic
space only three independent basis vector stars {k0j} are
compatible with Oh symmetry of the following structures:

〈A〉 : ±k[100]; 〈B〉 : ±k[111]; 〈C〉 : ±k[110]. (4)

Consequently, the only relevant sets of OP components
are non-zeros and are equal to each other:

η0
〈kj〉 = · · · = η0

〈kj′ 〉. (5)

Only a pair of representative vectors for each star is pre-
sented in (4). Miller indexes [hkl] are used in orientation
notation. One can see that in direct space 〈A〉-star identi-
fies the primitive cubic lattice, 〈B〉-the face-centered cubic
lattice, and 〈C〉-the body-centered cubic lattice.

In this paper only cubic phases are considered in detail,
however it should be mentioned that two non-zero com-
plex conjugate OP components η0

[001] = η0
[001̄] correspond

to a lamellar phase (Lα). Let us also note that the inter-
layer spacing in such Lα structure is strictly connected
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with the periodicity of the cubic structures as the criti-
cal kj vectors of these phases belong to the same star in
the isotropic state. For low symmetry 3D-periodic tetrag-
onal and rhombohedral phases, equilibrium conditions for
non-zero components are

〈D4h〉 : P : η1 = η0
±[100] = η0

±[010], η2 = η0
±[001],

I : η1 = η0
±[101] = η0

±[011], η2 = η0
±[110],

〈D3d〉 : R : η1 = η0
±[1̄01] = η0

±[11̄0] = η0
±[011̄];

η2 = η0
±[101] = η0

±[011] = η0
±[110],

(6)

and the corresponding solutions for the equations of state
are two-parametric. It is worthwhile to note that such
rhombohedral phase associated with the cubic one was
found earlier in the sodiumdecyl sulfate/water system [9].

For the sake of completeness the hexagonal mesophase
which is 2D-array of long stiff circular rods should be dis-
cussed, since this phase neighbors usually by cubic ones
in phase diagrams of lipid-containing or surfactant-water
systems (see, for example, [10,11]). Following the above
procedure one gets hexagonal phase when the equilibrium
values of the relevant OP are ηk1 = η−k1 = ηk2 = η−k2 6= 0
and ηkj = 0 (j 6= 1, 2) for an angle between k1 and k2

of 120◦. However, by analyzing the experimental data on
epitaxial relationships between hexagonal and cubic struc-
tures extensively studied by Clerc et al. [10] one can con-
clude that hexagonal and cubic phases are induced by
different order parameters. Following reference [10] the
repeat distance d10 between (10) planes in the hexago-
nal phase is continuous with the repeat distance d211 be-
tween the (211) planes in the cubic phase (d10 ≈ d211). As
demonstrated in [10], the (10) planes of hexagonal phase
are parallel to the (211) planes of the cubic phase: both
are the planes of highest density in the two phases. The
minimal lattice vectors relate to the single interplane dis-
tance in the hexagonal structure and to the double in-
terplane distance in the cubic structure. One may derive
the corresponding OP critical vectors whose modulus are
|kH| = 1/d10 and |kC| = 1/2d211, respectively for hexag-
onal and cubic structure. Inequality of the critical vec-
tors clearly indicates that the different OPs induce these
phases.

2.2 Thermodynamic model

In the preceding section the lowest degree invariants in
the integrity basis for IR D

0,kj
+ of Ẽ3 group were shown to

be of 2, 3, 4th degree. Taking into account the equilibrium
conditions (5) and (6) for low symmetry phases, one has
the integrity basis for the effective three-component OP
{ηk1 , ηk2 , ηk3}

I1 = η2
k1

+η2
k2

+η2
k3
, I2 = ηk1ηk2ηk3 , I3 = η4

k1
+ η4

k2
+ η4

k3,
(7)

where k1, k2 and k3 belong to any vector star from (4).
The full set of stable states corresponding to the irre-

ducible L-group contains eight phases [7,8,12]: (I) ηk1 =

Fig. 1. Location of the phases corresponding to the image
group defined by equation (7). (a) Topology of phases in the
orbit space (I1, I2, I3). (b) Equilibrium diagram, correspond-
ing to the thermodynamic potential (8) with the limiting con-
ditions (9). Full lines are first-order transition lines. T1 and T2

are triple points.

ηk2 = ηk3 = 0; (II) ηk1 6= 0, ηk2 = ηk3 = 0; (III+)
ηk1 = ηk2 = ηk3 6= 0; (III−) −ηk1 = ηk2 = ηk3 6= 0; (IV+).
ηk1 , ηk2 = ηk3 (η1 > η2); (IV−). −ηk1 , ηk2 = ηk3 (η1 > η2);
(V) ηk1 , ηk2 = ηk3 (η1 < η2) and (VI) ηk1 , ηk2 , ηk3 . One
can see that phase I in our model corresponds to the
isotropic state. Phase II has D∞h symmetry with transla-
tional symmetry broken in one direction and corresponds
to a lamellar structure. The III± are cubic phases (dif-
ferent lattices are not distinguishable). Solutions IV±, in
the chosen model, correspond to uniaxial phases, but one
can not distinguish between tetragonal and rhombohe-
dral symmetry. Phases V and VI are orthorhombic and
monoclinic. The location of the phases pertaining to the
phase diagram in the orbit space (I1, I2, I3), are shown in
Figure 1a. The phase diagram in orbit space not only
reveals the full set of possible stable states for the cor-
responding L-group but also provides an indication of
the topological properties of the phases in the real (e.g.
temperature-pressure) phase diagram. The phase I (non-
parametric solution) is located at the origin point I1 =
I2 = I3 = 0. The stability regions of one-parametric
solutions II and III± are represented by the edges of a
pyramid, the faces correspond to the two-parametric so-
lutions IV± and V and with the body filled by the phase
VI. The number characterizing reduction of dimension-
ality of the phase stability region in the orbit space is
known to be equal to the dimensionality of the corre-
sponding interphase border. From Figure 1a one can de-
duce that, when undergoing a phase transition from the
isotropic state (origin point in the phase diagram, zero-
parametric solution) to a phase associated with single-
parametric solution of equations of state (II or III±), the
dimensionality is reduced by one. This means that phases
II and III± can be reached directly from the phase I
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across a first-order transition line in contrast to the phases
IV+ and V which can touch phase I only at an isolated
point in the two-dimensional (for example, temperature-
concentration) phase diagram. For the lyotropic system
this means that only lamellar and cubic phases (among
mentioned above) can be expected to border an isotropic
phase in the phase diagram. Although two-dimensionally
periodic structures are not considered here due to the spe-
cific goals of the paper one can see that there are no prin-
cipal difficulties, following the procedure of Section 2.1, to
get corresponding equilibrium conditions for OP compo-
nents.

The thermodynamic model based on the order-
parameter expansion restricted to six-degree terms

F = a1I1 + a2I
2
1 + a3I

3
1 + b1I2 + b2I

2
2 + c1I3

+ f12I1I2 + f13I1I3 (8)

is sufficient to prove the stability of cubic and lamel-
lar phases. However, to have a transition line between
phases I and II, that would correspond to the experi-
mentally observed situation when isotropic and lamellar
phases are neighboring through the line of first-order tran-
sitions, additional special conditions for phenomenological
coefficients have to be satisfied. These special conditions
are:

a2 = a3 = b2 = f12 = 0, c1 < 0, f13 > 0. (9)

Figure 1b shows a part of equilibrium phase diagram of the
model (8) with special conditions (9) for the phenomeno-
logical coefficients in the plane of thermodynamic param-
eters (a1, b1). The I-II phase boundary is the straight
line parallel to b1 axis: a1 = c21/4f13. The equations in
parametric form of the first-order transition lines between
phases I and III± are{

9f13η
4 + 3c1η2 ± b1η + 3a1 = 0

18f13η
4 + 4c1η2 + b1η + 2a1 = 0

(10)

whilst the transition lines from III± to II are
f13η

6
1 + c1η

4
1 + a1η

2
1 = 9f13η

6
2 + 3c1η4

2 ± b1η3
2 + 3a1η

2
2

η2
1 =
−c1 ±

√
c21 − 3a1f13

3f13
18f13η

4
2 + 4c1η4

2 + b1η2 + 2a1 = 0.
(11)

One can see that the low symmetry phases can be reached
from the isotropic state across lines of first-order phase
transitions. The phase diagram of Figure 1b is symmetric
with respect to b1, or equivalently, with respect to change
in sign of ηi. Such a change means an exchange of the
population of amphiphilic and solvent molecules. In other
words the two symmetric phases can be interpreted as
corresponding to a direct cubic phase (III+) and its re-
versed analog (III−). The setup of a more complete phase
diagram associated with different OPs and incorporated
hexagonal and other observed phases is beyond the scope
of this paper and will be subject of a forthcoming report.

Our results on the phase diagram topology look
contradictive with the conclusion of Alexander and
McTague [13]. Following the latter only phases in which
an equilibrium cubic invariant does exist can border the
parent phase. However, such a conclusion clearly is not rig-
orous since the model used in [13] operates with a single-
component effective OP and only single section of the
phenomenological phase diagram has been analyzed.

To finalize this section let us note that conditions (9)
reduce the anisotropy of the Landau potential (8). This
property of the segregating lyotropic system will be dis-
cussed in Section 3.

2.3 Partially and fully segregated states

We did not mention up to now the very important problem
of description in segregating and self-organizing systems.
This problem results from the intrinsic limitation of phe-
nomenological theory of phase transitions in the symmetry
form introduced by Landau [5]. Strictly speaking the ordi-
nary phenomenological scheme does not include the stable
fully segregated state which is characterized by the prob-
ability for molecules to be inside periodically arranged ag-
gregates equal to unity and equal to zero in inter-aggregate
space. The variational free energy F (T, p, η) considered
above has no minima for a state with OP, independent of
the thermodynamical parameters. Thus, the Landau the-
ory in its classical form is applicable to the initial stages
of a segregation process, where OP is varying from zero
to unity but does not reach the latter (0 ≤ η < 1). The
probability for amphiphilic molecules to be in interaggre-
gate space is still non-zero and this theory is sufficient to
consider only transformation from an isotropic state to
partially segregated ones, i.e. to mesophases in which the
segregated and solvent regions are not fully separated (e.g.
bicontinuous mesophases).

In order to complete an approach by a possibility to
consider fully segregated states a semiphenomenological
scheme using a density-wave formalism was introduced for
displacive and ordering type phase transitions [8,14] and,
in the frame-work of such modified theory, OP was shown
to be a transcendental function of relevant microscopic
parameters ξi:

ηj = η0j sin f(ξi),

here ηj is the phenomenological OP and f(ξi), a linear
function of microscopic parameters ξi. The explicit form of
f(ξi) is specified by the transformation mechanism type.
The minimization of F has to be performed with respect
to the variational parameters ξi

∂F

∂ηj

∂ηj
∂ξi

= 0. (12)

In addition to the classical solutions of Landau theory
(∂F/∂ηj) = 0 equation (12) yields new ones (∂ηj/∂ξi) = 0
(ηj = const.).
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Fig. 2. Phase diagram associated with the one-component
order-parameter expansion (14). Full, dashed and dotted-
dashed lines are, respectively, first-order, second-order tran-
sitions and limit of stability lines. The regions of phase coex-
istence are shadowed. T1 and T2 are triple points, N is the
four-phase point.

For the segregation phase transitions function ηj(ξi)
was shown to have form

η = η0sin
π

2
ξ, (13)

where ξ is a normalized variation of population by
molecules of segregated subspaces, and η0 conventionally
equal unity [14].

In order to describe the transformations from the
isotropic state to cubic bicontinuous and to cubic micel-
lar structures one can use a model with non-linear single-
component OP (13). The variational free energy in this
model can be restricted to the fourth power

F (T, p, η(ξ)) = a1(T, p)η2 + a2η
3 + a3η

4. (14)

Introducing the function η(ξ) given by equation (13) in the
effective free-energy F (T, p, η(ξ)) one gets by minimizing
F (T, p, η(ξ)) with respect to the ξ variable, the equation
of state:(

sin
π

2
ξ
)(

cos
π

2
ξ
){

2a1 + 3a2sin
π

2
ξ + 4a3sin2 π

2
ξ
}

= 0

(15)

which yields three possible stable states:
1) Iso: sin π

2 ξ = 0, ξ = 0 - initial isotropic state;
2) CM: cos π2 ξ = 0, ξ = ±1 - micellar cubic phase;

3) CB: sin π
2 ξ = −3a2±

√
9a2

2−32a1a3

8a3
- bicontinuous cu-

bic phase.
Figure 2 shows the phase diagram of the model (14)

in the plane of the phenomenological parameters (a1, a2).
One can see that the low symmetry phases can be reached
from the isotropic phase across lines of first-order phase
transitions. Bicontinuous and micellar phase regions are
separated by lines of second-order topological transition,
which are determined by the property that the OP mag-
nitude reaches its maximal value η = 1.

The phase diagram in Figure 2 (as in Fig. 1b) is sym-
metric with respect to change in sign of η. Again, this
means an exchange of amphiphilic and solvent molecules.
In other words, the two symmetric phases can be inter-
preted as corresponding to the direct micellar or bicontin-
uous phases (C+

M and C+
B ) and to their reversed analogs

(C−M and C−B ). A direct-reversed phase transition of first-
order can easily be observed in this diagram.

3 Crystal structures

The standard scheme of phenomenological theory of phase
transitions would imply as a next step, after enumeration
of the stable low-symmetry states (Sect. 2.1), the determi-
nation of their space groups and, for concrete systems, the
prediction of the related structural deformation of the par-
ent phase or positions for molecules in the low-symmetry
structures [7,8,12]. Such a procedure applied to crystalline
structures of discrete symmetry possesses strict predictive
ability, reducing the variety of low-symmetry superstruc-
tures. However, this is not the case for the initial isotropic
state with continuous translational and rotational symme-
try. Various types of crystal lattices and space groups have
corresponding solutions for the equations of state due to
the infinite dimensionality of the relevant IR or, equiv-
alently, infinite number of arms in the {kj} vector star.
Different solutions of the equations of state as well as dif-
ferent numbers of order parameters (i.e. reducible OP),
induce the onset of different discrete structures. In order
to restrict to a reasonable number the varieties of possi-
ble discrete low-symmetry structures for lyotropic liquid
crystals and ensure predictive ability of our theory, we will
complete standard group-theoretical procedure by some
physical and crystallographic arguments.

3.1 Crystal field and micellar shape

Periodic space arrangement of amphiphilic molecular
aggregates is known to be controlled by specific factors
originating from the liquid-like nature of packed subunits,
specific form of interaction of aggregates and from the spe-
cific ratio between long and short-range interactions. For
ordinary elemental, ionic or molecular crystals, no limita-
tions exist for the site symmetry of positions occupied by
atoms, ions or molecules, or for their spatial organization
described by 230 space groups. However, this is not the
case for lyotropic crystals and thus, we will analyze briefly
such limitations and use them to predict the bicontinuous
and the micellar crystalline structures.

The first limitation we are going to use in our consid-
eration is justified by the preceding thermodynamic and
phenomenological analysis (Sect. 2.2). It has been shown
above that for the relevant single OP, only cubic Oh phases
border the isotropic state and other multi-parametric low-
symmetry solutions for equations of state can be reached
only by crossing these cubic phases. Experimentally the
situation is that in all known cases the stability regions of
cubic phases neighbor on the phase diagrams either with
isotropic solution or with a lamellar phase, in complete
agrement with the results of the preceding phenomeno-
logical analysis (Fig. 1). The same Oh crystal class for
possible lyotropic 3D-periodic structures was suggested by
Luzzati and coworkers [15], and by Seddon [16] using crys-
tallographic arguments.

Secondly, only micelles of identical chemical con-
tent exist in lyotropic systems. This assumption can
be justified on chemical grounds since the micelliza-
tion conditions are common for all groups of molecules
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in solution, and this is supported experimentally by the
existence of a unique critical micelle concentration. Hypo-
thetical aggregation of amphiphilic molecules in micelles
of different chemical contents under the same conditions
imply a strong non-equilibrium situation with gradients
in the chemical potential. Consequently, due to the chem-
ical identity of micelles, multiple sublattice micellar struc-
tures can be formed mainly by micelles of different shape.
In the isotropic solution the micellar shape is controlled
exclusively by the minimization of surface energy with re-
spect to a scalar parameter (curvature). Thus, the point
symmetry of the initial minimal surface coincides with
the point symmetry of the parent isotropic phase, i.e.
the micelles are spherical. The homogeneous deformations
changing the shape of the micelle with the good accu-
racy are components of a symmetrical second-rank ten-
sor. Such a deformation can change the micellar shape
from isotropic spherical to uniaxial (oblate or prolate), or
to biaxial (rounded matchbox) but it can not induce an
inversion center loss. The same conclusion can be reached
for a system of non-spherical micelles considering statisti-
cal or dynamical average symmetry and correspond effec-
tive shape, due to the identical transformation properties
of orientational and deformation OPs.

One could suggest that the shape and the proper sym-
metry of micelles aggregated in a cubic structure can be
affected by the crystal field, as in site symmetry of ions
or molecules in ordinary crystals. However two important
features of the lyotropic crystal field, compared to an ordi-
nary one, should be stressed. The first is that the charac-
ter of the inter-micellar interaction is essentially isotropic,
in contrast to the simplest inter-atomic interactions in
metallic crystals, which are known to have a anisotropic
tensorial character. Let us recall here the isotropization of
Landau potential (Sect. 2.2, Eq. (9)) that has been justi-
fied by experimental arguments. Since the initial state is
isotropic, the potential of undulative forces reflects mainly
the character of interactions in the low-symmetry peri-
odic state. For the segregation (probabilistic) phase tran-
sition mechanism, the phenomenological coefficients ai,
bi, ci and fij have meaning as a linear combination of
N -body interaction potentials, where N is equal to the
degree of the corresponding invariant. The special condi-
tions (9) show that, despite the fact that interactions in
a segregated lyotropic system cannot be reduced simply
to pairwise terms (when only the ai 6= 0), the anisotropic
part is extremely limited. The second point is related to
the ratio between bonding and deformation energy of crys-
tallizing units. For an ordinary crystal these energies can
be considered approximately as the latent heat of crystal-
lization and as the distance between atomic energy levels
correspondingly, and they have either the same order of
magnitude or the deformation energy is one order more.
In micellar systems, the deformation energy is related es-
sentially to the bending surface energy and is of the order
of 10−11 ergs, that is, at least, three orders higher than
the bonding energy (10−14 ergs). The same ratio could be
calculated if the deformation energy is identified as that of
micellar formation which is on the order of 10−10 ergs as,

for example, in the dodecylammonium octanoate system.
This means that there is no reason to consider the possi-
bility of micellar shape deformation by the crystal field.
Thus, in the search for possible crystallographic positions
of the micelles, only chemically identical spherical, uni- or
biaxial centrosymmetric micelles will be considered.

In bicontinuous structures two chemically nonidentical
subspaces of amphiphilic molecules and solvent are known
to exist. Amphiphilic molecules form continuous passages
linking the volumes surrounding high-symmetry points in
the structure. The minimization conditions for the pas-
sage surface energy determine, as well, the geometry of
the corresponding skeletal graphs, which tend to be lines
of maximal symmetry. These latter belong in the space
groups to the (x00), (xx0) and (xxx) type Wyckoff posi-
tions. The existence of a single free parameter for this type
of position ensures the stability of corresponding bicon-
tinuous structures as its geometry suppresses destructive
transverse fluctuations.

3.2 Lattice complexes

In crystal structures with different space groups, the rel-
ative locations of symmetrically equivalent atoms may be
the same (e.g. Cl in CsCl and F in CaF2). Such a set
of points is called a point configuration. Point configu-
rations have been grouped into types called lattice com-
plexes, each type referring to a Wyckoff position. Following
the definition in reference [17], a lattice complex is the set
of all point configurations that may be generated within
one type of Wyckoff sets. Let us stress that the same lat-
tice complexes may occur in different space-group types.
For example, the complex “cubic primitive lattice” may
be generated on O1

h - Wyckoff positions 1(a) and 1(b),
O5
h - 8(c). All Wyckoff positions, Wyckoff sets and types

of Wyckoff sets are assigned to the 402 lattice complexes
listed in [17].

The existence of a restricted number of possible ag-
gregate types in the cubic mesophases makes important
the characteristic space-group type of the lattice complex;
that is, one stands out because its corresponding Wyckoff
position exhibits the highest site symmetry. This latter is
called the characteristic position of the lattice complex.

The concept of lattice complex is very useful when
considering crystal structures with a limited number of
sublattices, such as those found in micellar and bicontinu-
ous cubic crystals. We should take into account that only
the characteristic positions being occupied provide exper-
imental possibility to distinguish between space groups.
For example, analyzing probable space group O5

h for a
crystal structure, one can not localize single type mi-
celles in the 8(c) position mentioned above. This is due
to the fact that it belongs to the primitive cubic lattice
and so will be identified as O1

h space group in the X-ray
diffraction experiment. In our analysis we have checked all
such possibilities.
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Table 1. Micellar (M) and bicontinuous (B) cubic structures.
Note: Upper index * marks the characteristic positions for mi-
cellar structures. Lower index notes a shape of micelle: s, spher-
ical; u, uniaxial; b, biaxial.

Space Group Type Position

O1
h M a∗s , b

∗
s , c
∗
u, d
∗
u

B e, f, h, i, j

O3
h M as, bb, c

∗
u, d
∗
u

B j

O4
h B e, i, j

O5
h M a∗s , b

∗
s , cs, db

B h, i

O7
h M a∗s , b

∗
s , c
∗
u, d
∗
u

B h

O8
h B g

O9
h M a∗s , b

∗
s , cu, d

∗
u

B e, f, h, i

O10
h B f, g

3.3 Space groups selection

Now we apply the selection procedure for all space groups
belonging to the Oh crystal class. For micellar systems it
consists of direct examination of all non-parametric Wyck-
off positions in the space group with respect to their site
symmetry and characteristic properties. The bicontinuous
structures, in addition, must be revised from the point of
view of possible intersections of passages that can change
the crystal lattice or its periodicity.

To show the procedure for micellar crystals let us ap-
ply the criteria above to two space groups. The first one,
O2
h, has no centrosymmetric positions and so, it is ruled

out. The second one, O3
h, has four centrosymmetric non-

parametric positions. Two of them, 2(a): (000) and 6(b):
(0 1/2 1/2) are not characteristic following the table in
reference [17] and being occupied, will produce diffraction
patterns identified as O9

h space group with positions 1(a)
and 3(b) correspondingly filled. This means that a set of
single type micelles can be arranged like position points
2(a) and 6(b), but it has no O3

h symmetry. Positions 6(c):
(1/4 0 1/2) and 6(d): (1/4 1/2 0) are characteristic ones
for O3

h space group, and micelles being distributed among
them, show corresponding space symmetry. One can con-
clude that for the single-type micellar crystal of O3

h space
symmetry, the positions 6(c) or 6(d) must be filled. For
complex micellar structures these positions can be com-
pleted by 2(a) and/or 6(b) positions. Table 1 summarizes
results of such an analysis of space groups belonging to
the Oh symmetry class and indexes all allowed positions.
The characteristic positions that have to be occupied are
marked as well.

The specific feature of the bicontinuous structures is
that all points of their corresponding skeletal graphs (i.e.
axial lines along which amphiphilic layers are organized),

Fig. 3. Transformation of primitive cubic arrangement of
Schwarz I-WP-surfaces to the body-centered cubic one. (a)
Skeletal graph of I-WP surface. (b) Eight cubic unit cells. One
can see an additional intersectial nodes in the center of the
cubic unit cell.

excluding intersects, belong to the single-type Wyckoff
positions in the space group. Despite this fact, each bi-
continuous network has to be examined for a possible in-
tersection of passages. For example, surface which orga-
nized along the straight lines belonging to 8(g): (xxx)
position of O1

h space group is I-WP Schwarz minimal
surface (Fig. 3a). However, being arranged on a primi-
tive cubic lattice, the corresponding skeletal graphs will
have identical intersection nodes in the positions (000)
and (1/2 1/2 1/2) (Fig. 3b). Such a space organization of
identical nodes identifies the body-centered cubic lattice
and the O9

h space group. Thus, diffraction experiment will
show spacings corresponding to the latter. It should be
stressed that, in the case of ordinary crystal with discrete
packing of objects, the 8(g) position is characteristic of O1

h
group, and one can conclude that for bicontinuous struc-
tures, the concept of lattice complexes should be applied
with some modifications.

4 Discussion

Two approaches, being in fact complementary, were used
earlier to predict the stable structures in the lyotropic
liquid-crystalline systems. The first approach, due to
Charvolin and Sadoc [18], formulates the problem of de-
scription of these structures in purely geometrical terms
and reduces it to the search for geometrical elements,
points, lines or surfaces, around which, or along which, the
amphiphilic layers may be organized in order to conciliate
optimal distances and symmetric interfacial curvatures. In
such an approach the polymorphism of amphiphilic sys-
tems is associated with the set of geometrical configura-
tions which optimize the frustration between forces per-
pendicular to the interfaces, maintaining them at constant
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distances, and forces parallel to the interfaces, controlling
their curvature. In the framework of this approach, three
principal types of spatial organization of the amphiphilic
layers or, equivalently, three types of bicontinuous struc-
tures have been generated, and it has been shown that
the corresponding surfaces are related to infinite periodic
minimal surfaces (IPMS). These are the Schoen Gyroid
G, the Schwarz F surface (or diamond surface D) and the
Schwarz P surface [18]. Three cubic structures with space
groups O10

h , O4
h and O9

h are actually known to correspond
to these IPMS.

The second approach, presented mostly in the papers
of Anderson, Hyde and coworkers, uses the elegant formal-
ism of differential geometry in order to derive IPMS [19].
The same list of bicontinuous structures corresponding to
different IPMS has been worked out showing the consis-
tency of those two approaches. Nevertheless, evidence is
mounting that many more IPMS exist than those so far
discovered, and many solutions exist within each space
group ([20] and references there).

Keeping in mind such actual indeterminacy, our analy-
sis, following the spirit of Landau type theory, allows us to
determine an upper limit for the variety of anisotropic low
symmetry structures. This means that structures not con-
tained in Table 1 can not be formed in lyotropic systems
but the stability conditions for the possible ones should be
located in the framework of the corresponding thermody-
namic model formulated on the basis of general consider-
ations (see in Sect. 2). The special positions in the space
groups belonging to the crystal class Oh were examined
with respect to their compatibility with the micellar or
bicontinuous organization. Structures predicted within a
such approach, due to the purely symmetry basis of the
latter, will be stable even if their stability is not controlled
exclusively by the topological factors or, by the minimiza-
tion conditions for the corresponding surface. Table 1 lists
the limited number of space groups and allowed positions
for amphiphilic aggregates that essentially restricts the
variety of structures showing the same spacings in X-ray
diffraction.

It is of interest also to examine the relation between
predicted bicontinuous and micellar structures. Semiphe-
nomenological considerations predict a possibility for dis-
ruption of passages of any bicontinuous structure and
its topological transformation to the micellar one (see,
Sect. 2.3, Fig. 2). A direct test of predicted structures
from Table 1 has shown that, in full agreement with the
results of the above procedure, bicontinuous structures
with O4

h, O8
h and O10

h space symmetry have no related
micellar structures of the same symmetry since the dis-
crete positions appearing in the disrupted variants are not
characteristic. The corresponding micellar structures then
have O5

h and O9
h symmetries. This fact is important for ex-

perimental identification of phases in the phase diagrams
because there are no purely phenomenological reasons for
a topological phase transition to change the symmetry
of the system. Predicted bicontinuous structures of other
symmetries follow the latter rule and their related micellar
structures keep the space group unchanged.

Fig. 4. Geometry of passages in some cubic bicontinuous struc-
tures. (a) Cross-like element. (b) Skeletal graph showing cross-
like intersections of passages. Only eight’s part of cubic unit-
cell is presented. (c) Hexagonal intersection of infinite passages
in the cubic structure. Eight’s part of the unit-cell is shown.

Among the possible types of spatial bicontinuous orga-
nization of bilayers summarized in Table 1, several types
correspond to the well-known IPMS, but there are still two
new types of surfaces that have not been used before in
the interpretation of diffraction data. The first one, cross-
like, is generated by the (h)-position of O1

h space group.
Figures 4a and 4b shows the basic element of such a sur-
face and its spatial arrangement in the cubic structure.
This latter is usually referred as Petrie’s hexagon [18]. The
second one, is the hexagonal interwoven nets (Fig. 4c) that
are formed by passages belonging to the positions (j) in
O3
h, (h) in O7

h, (g) in O8
h and (i) in O9

h, but spatial or-
ganization of such flat hexagonal grids is different in all
mentioned space groups.

It is worthwhile to mention an intermediate between
micellar and bicontinuous form of cubic organization
which is not presented in Table 1. A structure formed by
nonintersective orthogonal infinite rods can be realized on
the positions (g) and (h) of O3

h group. The correspond-
ing structure of defect lines was found in the molecular
liquid-crystalline “blue phase II” [21].

The structure of seven cubic phases listed in Table 1
are now well established. Four direct and reversed micel-
lar structures belonging to the space groups O3

h(Pm3n),
O7
h(Fd3m), O5

h(Fm3m) and O9
h (Im3m) have been found

for different amphiphilic molecular aggregates [2–4]. The
two latter structures are formed by the single type of mi-
celle while the remaining are two-sublattice. Three bicon-
tinuous cubic phases of O4

h(Pn3m), O9
h and O10

h (Ia3d)
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symmetry are also well established at present [2]. Some
compounds provide examples of really rich cubic polymor-
phism. In the dodecaoxyethylene mono-n-dodecyl ether
(C12EO12)/water system, the first three of just men-
tioned above micellar cubic phases were identified [22].
Another impressive example is the poly(oxybutylene)-b-
poly(oxyethylene)-water-xylene system, in which not only
all known bicontinuous structures are present, but also
three more micellar phases were found [23].

Despite an auxiliary character of the thermody-
namic consideration presented herein some of its pre-
dictions could be related directly to experimental data.
In particular, the first-order character of all “isotropic-
periodic cubic” and “lamellar-cubic” transitions is un-
doubtedly proved experimentally by the existence of
biphasic metastable regions between mentioned states on
“temperature-concentration” or on concentration trian-
gle diagrams. However, more detailed comparison with
existing experimental data (for example, the form of
the phase boundaries) is difficult as a phenomenological
theory operates with intensive parameters (temperature
and pressure) that provides a linear transformation of
phenomenological coefficients and mapping of the theo-
retical phase diagrams to p−T diagrams. The concen-
tration is an extensive parameter generally showing no
analytical relation to the variational parameters of phe-
nomenological theory. The indicative property of the cor-
responding temperature-concentration phase diagram is
the bell-shaped stability domains of anisotropic phases
that is the case, for example, for the surfactant-water and
lipid-containing systems mentioned in Section 2.1 [10,11].
Nevertheless, it does not exclude the possibility for the
concentration to play the role of an intensive parameter
through the coupling with true intensive variables, as that
shown to occur in some lyotropic systems [24,25].

We would like to thank V. Torgashev for helpful discus-
sions, T. Taylor and T. Lubensky for a critical reading of the
manuscript.
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